双色探测激光引信抗海浪技术

谢绍禹1.2,赵毅强1,王金花2,贾晓东2

(1. 天津大学 电子信息工程学院,天津 300072;
2. 天津津航技术物理研究所,天津 300308)

摘 要: 阐述了双色激光引信探测的原理,提出采用双色探测,利用海水对红外激光与蓝绿激光回波 特性时域差异显著,而舰船对二者的反射特性相近的特点,区分目标与海面,提出抗海浪干扰和判别 目标的双色激光引信方案。双色激光引信利用激光发射系统同时发出红外和蓝绿窄脉冲激光,激光 接收系统采用两路探测器分别接收两种波长的回波信号,信息处理系统对两路激光回波信号进行高 速实时采集,获得两路回波信号幅度、脉冲宽度、回波率等区分目标和海面。通过设计样机并进行海 面试验,试验结果表明,双色激光引信抗海浪干扰效果良好。

关键词:激光引信; 双色探测; 抗海浪

中图分类号: TN249 文献标志码: A DOI: 10.3788/IRLA201746.0406005

Laser fuze anti-surf based on two-wavelength detection

Xie Shaoyu^{1,2}, Zhao Yiqiang¹, Wang Jinhua², Jia Xiaodong²

School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China;
Tianjin Jinhang Institute of Technical Physics, Tianjin 300308, China)

Abstract: Two-wavelength laser fuze detection principle was expounded and a new technical approach was invented for laser fuze anti-surf and target-recognition by the character of echo between infrared and blue-green laser was different observably when two-wavelength laser exposured sea and the character of echo between infrared and blue-green laser was similar when two-wavelength laser exposured the target. Laser transmitter system of two-wavelength laser fuze transmitted two kinds band laser of infrared and blue-green at same time, receiving system received echo signal of two kinds band by two detectors, information processing system acquisited echo signal with high-speeds and realtime to acquire the range, pulse width and laser echo ratio and so on, using this information to distinguish sea and target. The prototype of two-wavelength laser fuze was designed, and the different objectives test in the sea by the prototype was done. The result of test show that the effect of two-wavelength laser fuze anti-surf is favourable.

Key words: laser fuze; two-wavelength detection; anti-surf

收稿日期:2016-08-05; 修订日期:2016-09-03

基金项目:武器装备预先研究项目

作者简介:谢绍禹(1983-),男,博士生,主要从事激光探测方面的研究。Email:xsy0371@163.com

导师简介:赵毅强(1967-),男,教授,博士,主要从事传感器设计等领域方面的研究。Email:yq_zhao@tju.edu.cn

0 引 言

激光引信以其抗电磁干扰能力强、分辨率高、系 统工作稳定等优越性能,备受各国军事专家的关注 和青睐,但是易受海浪杂波的干扰,限制了激光引信 目标判别能力。文中寻找一种新的抗干扰体制,为激 光引信在有效进行目标判别及抗干扰等方面提供新 的思路和理论依据。目前,国外双色激光复合技术主 要用于激光制导。如美国通用动力公司研制成功的 "尾刺"后继型号:法国汤姆逊无线电公司报道"西北 风"导弹也采用红外(InAs)紫外的双色制导体制:俄 罗斯军方也正研制这种双色制导导弹。已装备和在 研的此类精确制导武器,典型的有美国研制的"尾 刺"便携式地空导弹及"智能卵石"天基拦截弹等。在 激光引信中采用双色探测体制具有重要的借鉴意 义。文中采用红外激光和蓝绿激光复合探测技术,利 用海水对红外激光与蓝绿激光回波特性时域差异显 著,而舰船对二者的反射特性相近的特点,区分目标 与海面,达到抗海浪干扰和判别目标的目的。

1 蓝绿激光和红外激光对海面的衰减特性

激光光束探测海面的光学特性比较复杂,存在 很多不确定的因素,不仅与激光的波长、激光的发射 视场、接收视场等因素密切相关,同时海面的光学特 性与海面高度、海浪的波长、所在海域的风速、海水 中的盐度、海水所含的物质等因素息息相关^[11]。由海 面引起的光的吸收和散射所对应的效应会对激光探 测海面造成极大的负面效应。红外/蓝绿激光对海面 的回波特性,如反射特性、吸收特性、散射特性等方 面不同。

海水对除了蓝绿光外的激光的传输是不透明的,海面的热辐射主要是海面几毫米厚的海水温度辐射。对于纯水的吸收系数见表 1,此表为 W.R. Sawyer 测试,在 0.32~0.65 μm 之间和根据 J.R. Collins 测量,在大于 0.65 μm 的波长下纯水(每米)的 吸收系数。

对于纯水,532 nm 的激光海水光谱的吸收数据 是 0.024 左右,单位是 m⁻¹;1064 nm 的激光海水光谱 的吸收数据是 17.7 左右,单位是 m⁻¹。海水对激光的 吸收的原因比较复杂,纯水、浮游植物和黄色物质是 导致海水吸收的主要因素。其中激光吸收作用很大的是海水中的溶解物质,海水中的溶解的物质含量 增大会导致对激光吸收的增大^[2]。海水中的黄色物 质主要是海洋生物和有机体腐败分解形成的可溶性 有机物质,这些有机物质对海水的吸收系数会随激 光波长的减小而很快增大。另外,激光在海水中的吸 收在空间、时间上还具有极大的易变性。在同一海域 不同的时间、不同的深度,及在不同的海域,海水对 激光的吸收都不同。海水中所含物质的变化是产生 这种现象的主要原因。海水的吸收通常情况下随海 水深度的增加而减小。海水温度的变化与海水对激 光的吸收的关系中不明显。

表 1 不同波长下纯水的吸收系数 Tab.1 Absorption coefficient of pure water with different laser wavelengths

Wavelength /µm	Absorption coefficient /m ⁻¹	Wavelength /µm	Absorption coefficient /m ⁻¹
0.32	0.58	0.65	0.210
0.34	0.38	0.70	0.84
0.36	0.28	0.75	2.72
0.38	0.148	0.80	2.40
0.40	0.072	0.85	4.12
0.42	0.041	0.90	6.55
0.44	0.023	0.95	28.80
0.46	0.015	1.00	39.70
0.48	0.015	1.05	17.70
0.50	0.016	1.10	20.30
0.52	0.019	1.6	800.0
0.54	0.024	1.7	730.0
0.56	0.030	1.8	1 700.0
0.58	0.055	1.9	7 300.0
0.60	0.125	2.00	8 500.0
0.62	0.178	2.10	3 900.0

2 蓝绿激光在海水中的散射特性

在海水中蓝绿激光的散射的主要原因从微观机 理上讲是因为光子的传播路径发生变化,从宏观上 来看是因为激光在海水中的分布发生了变化。导致 蓝绿激光散射发生主要由两部分原因组成,一是由 水体本身造成的,纯水的散射可以看作是分子散射, 瑞利(Rayleigh)和起伏理论可以解释这个问题^[3]。另 一部分散射发生是由水体介质中接近入射的蓝绿激 光波长的粒子引起,此时散射能量集中在偏离传播 方向附近很小的范围内,米氏(Mie)理论可以解释这 一问题。单位入射的蓝绿激光光束在 θ方向上产生 的散射为:

$$i(\theta) = \lambda^2 (i_1 + i i_2) / 8\pi^2 \tag{1}$$

对上式进行积分,可以得到总的散射辐射:

$$I=2\pi \int_{0}^{\pi} i(\theta) \sin(\theta) d\theta = \frac{\lambda^{2}}{4\pi} \int_{0}^{\pi} (i_{1}+i_{2}) \sin(\theta) d\theta \qquad (2)$$

对不同的海水类型和不同的海域,散射的差异 比较大。对于近海的海水,米氏散射为主要原因;而 对于深海的海水,瑞利散射为主要原因,同时,入射 到海水中的激光束的能量分布在很宽的角度范围 内,体积 dv 产生的散射光的能量 dF 为:

$$dF = AdvE(L) \tag{3}$$

式中:A 为体积散射系数;E(L)为入射光在散射体积 上的照度,考虑到海水体积、散射光的强度,是极坐 标 θ, φ 的函数,对上式进行化简,归一化得到:

$$A=2\pi \int_{2}^{\pi} \frac{\mathrm{d}I(L)}{\mathrm{d}vE(L)} \sin(\theta) \mathrm{d}\theta = 2\pi \int_{2}^{\pi} \delta(\theta) \sin(\theta) \mathrm{d}\theta \quad (4)$$

δ(θ)为体积散射系数,海水中的介质引起的米 氏散射,δ(θ)与散射角的关系较大,这样海水中的介 质粒子使前向散射角和后向散射增大,其中前向散 射增加的幅度大,因此海水中产生尖锐的前向散射 区域。水体本身引起的瑞利散射,δ(θ)与散射角的关 系不大,前向散射和后向散射基本相同,90°方向上 的散射只减小了一半。这也说明了在海水中传输的 蓝绿激光主要是沿着光的传播方向。后向散射导致 激光回波信号信噪比降低和激光脉冲到达目标时间 延迟^[4-6]。

3 蓝绿激光和红外激光对海水时域差异

发现蓝绿激光和红外激光对海水存在时域差 异,不同波长激光对海水的衰减不同。海水的损耗对 光谱具有选择性,532 nm 蓝绿光处衰减最小,为 10⁻⁴, 主要表现为散射和吸收,在海水中按指数衰减,散射 回来的激光回波可能会展宽;1 064 nm 近红外波长 衰减大,为 10³,主要表现为反射和吸收,所以反射回 蓝绿激光和红外激光对海水反射回波在波形宽度和 能量上应有明显变化,而对舰船反射在波形宽度上 没有变化。另外,受到海面波浪谱的影响,会导致红 外激光反射信号的幅度起伏,回波率变化,而蓝绿光强度和回波率相对稳定^[7-9]。

4 红外/蓝绿激光引信方案设计

同源红外/蓝绿激光引信采用单支路小视场双 波长激光探测方式。引信主要由双色激光发射系统、 双色激光接收系统、信息处理系统、光学系统(包括 发射光学和接收光学)、电源变换系统组成。系统结 构框图见图 1。

双色激光引信工作过程:信息处理系统发出触 发信号,激光发射系统同时发出红外/蓝绿窄脉冲激 光,激光接收系统两路探测器分别接收两种波长的 回波信号,信息处理系统利用高速数据采集电路对 双色激光回波信号进行快速实时采集,综合信息处 理电路对采集后的回波信息包括波形状态、幅度和 回波率等进行存储、量化、分析,通过双色回波时域 差异特性分析,进行双色激光回波信息融合处理,建 立有效目标判别阈值,进行判断比较,达到区分目标 和海面的目的。

5 双色探测激光引信信息处理设计

信息处理系统功能起中央控制的作用,由硬件 和软件两部分组成,软件主要由信息融合算法、抗海 浪干扰算法。硬件包括综合信息处理电路、高速采集 电路及其外围电路、系统软件(计算软件、控制软件、 通讯软件)和引炸电路等构成。主要完数据计算处理、 目标及背景判别、抗海浪干扰、距离计算引炸指令条 件判断和输出等。具体方案框图如图2所示。综合信 息处理电路主要包括:晶振、程序存储单元和 FPGA 单元组成,其中 FPGA 单元主要完成时钟管理、数据 存储、数据处理以及系统控制等功能。FPGA 芯片采用 Xilinx 公司 Virtex-5 系列的 XC5VLX50 型号,具有 500 万个逻辑门,最大时钟工作频率为550 MHz。

图 2 双色激光引信信息处理方案示意图

Fig.2 Sketch map of signal processing of two-wavelength laser fuze

6 试验验证

通过设计双色激光引信发射和接收的技术参数 见表 2。

表 2 双色激光探测技术参数

Tab.2	Parameter	of	two-wave	length	laser	fuze
-------	-----------	----	----------	--------	-------	------

Detection by t	Technical parameters		
	Wavelength/nm	1 064	
	Width of plus/ns	11	
Infrared	Average power/mW	50	
	Peak power/W	800	
	Divergence angle/(°)	2	
	Wavelength/nm	532	
	Width of plus/ns	11	
Blue-green	Average power/mW	50	
	Peak power/W	800	
	Divergence angle/(°)	2	
Receiving	4		

抗海浪试验地点选定在烟台第一浴场舰桥,见 图 3,在三级海浪的情况下进行了双色激光对模拟 目标和海浪背景的测试试验,验证了双色激光对模 拟目标和海浪背景在激光回波幅度和回波率存在很 大差异。

图 3 双色激光引信抗海浪干扰试验地点 Fig.3 Anti-surf test position with two-wavelength laser fuze

试验结果如下:(1) 幅度,对于模拟目标,红外激光 和蓝绿激光回波幅度较大处于饱和状态,回波率均稳 定,见图 4,双色激光幅度随距离的增大而减弱;对于海 浪,红外激光和蓝绿激光回波幅度较小,红外激光幅度 变化较大,蓝绿激光回波幅度稳定,见图 5。(2) 宽度,对 模拟目标和海浪背景,红外激光和蓝绿激光回波脉冲 宽度一致,双色激光回波没有展宽。(3) 回波率,对于模 拟目标,红外激光和蓝绿激光回波率为 100%,稳定;对 于海浪,红外激光回波率受水面波动影响严重,蓝绿激 光受动态水面影响小,回波率稳定。

图 4 对模拟目标的双色回波波形

图 5 对海浪的双色回波波形

Fig.5 Waveform of sea wave with two-wavelength laser fuze

7 结 论

文中提出了双色探测激光引信的实现原理和设 计方案,进而开展了双色探测激光引信样机设计,并 利用样机进行了海面抗干扰试验,试验结果表明,双 色激光引信在抗海浪干扰方面效果良好。

参考文献:

- [1] Mao Hongxia. Study off reflection of sea surface[J]. Journal of East China Normal University, 2000, 9(3): 3-6. (in Chinese) 毛红霞. 海面反射特性研究[J]. 华东师范大学学报, 2000, 9(3): 3-6
- [2] Cox C, Munk W H. Statistics of the sea surface derived from sun glitter E[J]. J Mar Res, 2014, 13: 198-227.
- Zhang Haojun, Zhao Jianlin. Dual-wave technology used in [3] laser-fuse anti-interfere[J]. Infrared and Laser Engineering, 2011, 40(6): 5-9. (in Chinese)

- of plused laser diode in laser proximity fuze [J]. Infrared and Laser Engineering, 2012, 41(12): 9-13. (in Chinese) 王金花,姚宏宝.脉冲半导体激光器在激光引信应用中应 注意的问题[J]. 红外与激光工程, 2012, 41(12)9-13.
- Xing Qiang, Ren Haigang. Study on directional emissivity of [5] rough sea surface[J]. Laser and Infrared, 2006, 36(4): 2-6.
- Zhang Hui, Zhu Yong, Wang Yongtian. Optical fiber-based [6] simulation system forlaser fuze [J]. Infrared and Laser Engineering, 2003, 32(6): 19-27. (in Chinese) 张辉,朱永,王涌天.基于光纤传输的激光引信仿真系统 [J]. 红外与激光工程, 2003, 32(6): 19-27.
- [7] Schneider M, Wurm G. Experiments on light scattering and extinction by small, icrometer-sized aggregates of spheres[J]. Appl Opt, 2002, 41(6): 1175-1180.
- [8] Li Xudong, Yang Hongru, Wu Lei, et al. Study of Laser Scattering Effect on bubbles in Ocean [C]//SPIE, 2015, 6150: 1-5.
- [9] Edith Rodrguez, Elena Montilla, Mauricio Jaramillo, et al. Simulation model of scattering properties and extinction of laser light applied to urban aerosols over the city of cali, Colombia[C]//SPIE, 2014, 5948: 1-5.